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Abstract- In this paper we propose the idea of building a new 
software reliability models using Radial Basis Function (RBF) 
network. The RBF network is easy to design and the network 
structure can be represented in a simple mathematical equation. 
Our goal is to build a generalized model that can be used for 
software predication [1]. The RBF network was trained with a 
set of data collected from the testing process of Military 
application projects. The RBF model was tested on other sets of 
projects. The results are promising.   
 
 
1. Introduction 
 
Building a reliable model for predicting faults in software 
testing process is very important in software reliability 
growth prediction because both the release date and 
resource allocation decision can be affected by the 
accuracy of predication. Several solutions have been 
proposed to address these issues for model selection [2,3]. 
 
Recently, computer systems started to play important 
roles in our society. When failure happens to such systems 
major damages are expected. This is why computer 
systems must be very reliable. The current reduction of 
hardware cost made redundancy techniques feasible so 
that hardware faults are well tolerated by these 
redundancy techniques. Due to increasing advance and 
complexity of the developed software engineering 
systems most computer systems today is huge and 
complicated so that it is more likely to suffer from faults.  
Thus, the reliability of software has recently become one 
of the major issues in the realization of highly reliable 
computer systems. The problem of developing efficient 
and reliable software is still a challenge.  
 
One of the main research direction in software reliability 
research is how to develop general prediction models [4]. 
Existing models usually count on a priori information and 
assumptions about the type of expected failures, the 
probability of individual failures and the probability of 

individual failures. Most of these models, named as 
parametric models. The model parameters are adjusted 
such that it can catch the behavior of the testing to failure 
response. Statistical techniques are likely to provide 
models that are linear in the parameters. This type of 
models can not catch the actual testing to failure 
characteristics by adjusting two or three parameters. 
 
 
2. Neural Networks in the Prediction of Software 

Reliability  

One of the most common model-building approach used 
in the literature as an alternative to least mean squares 
regression is the feed-forward neural network. It is often 
simply called back-propagation neural networks. 
  
Although there is a large number of different neural 
network architectures and training algorithms exist, 
almost all published studies in software reliability 
concerned was limited to this type [5,6,7,8,9,10]. This can 
be seen as a reflection of the way of understanding the 
neural network techniques by many practitioner. 
 
 
3 Structure of RBF Network 
 
The problem of interpolation of real multivariable time 
series can be expressed as follows. Let us consider that a 
set of N data points input space Rd, together with their 
associated desired output values in R: 
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This data set can be used to characterize a function with 
one-dimensional output values multi-dimensional 
interpolation can be done by generalizing the following 
equations and algorithms, while; considering separately 
each component of the output vectors. We will consider 
only dimensional output in the following. The RBF 
approach to approximate function f use M functions φϕ . φϕ 
is, the radial basis function, described as follows:  



 

                                  φj (u) = φj (|| u-cj ||)                 (2)     

cj are the locations of the centroids i.e., the centers of the 
radial basis functions, while |…| denotes as the 
Euclidean norm and j= 1, 2 …,N.  u is the network input 
vector. The approximation of the function f may be 
expressed as a linear combination of the radial basis 
functions: 
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The most common radial basis function, in practices, is a 
Gaussian kernel given by: 
 

       φj (|| u-cj ||) = exp(|| u-cj ||/rj )2         (4) 

 

rj is the width factor of the kernel j (j= 1,2,..,N). Once the 
general shape of the φj function is chosen, i.e. cj  and rj, 
thus the purpose of a RBF algorithm is to find the weights 
wj, to best fit the function  f. fitting means that global mean 
square errors between the desired outputs yi far all data 
input points xi, 1 ≤  i ≤  N and the estimated outputs 

)(ˆ ky is minimized. This error is given by: 
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4. Measure of Performance 
 
The evaluation criterion was defined as the Mean of the 
Sum Square of the Error (MSSE). The equation which, 
governs the MSSE is as follows: 
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N  is the number of measurements used. yi  is the observed 

faults and 
∧
y  is the predicted faults for the given 

model structure.  
 

5. Prediction Using RBF Network 

5.1 Data Used 

 
John Musa of Bell Telephone Laboratories compiled a 
software reliability database contains data for 16 projects 
from various applications. He collected failure interval 
data to assist software managers in monitoring test status, 

predicting schedules and to assist software researchers in 
validating software reliability models.  
 
5.2 Network Structure  
 
The architecture of the network used for modeling the real 
time control program is a multi-layer feed-forward 
network. It consists of input layer, one hidden layer, and 
an output layer. The input layer contains a number of 
neurons equal to the number of delayed measurements 
allowed to build the network model. 
 
In our case, there are four input signals to the RBF 
network. They are y(k-1),y(k-2),y(k-3),and y(k-4). y(k-1) is 
the observed faults per day before the current day. The 
hidden layer consists of four nonlinear neurons. The 
activation functions for these neurons are Gaussian 
function. The hidden units are fully connected to both the 
input and output. The hidden and output layers node has 
a linear activation function. 
 
5.2 Training with single project and Testing   with two 
projects 
 
The neural network was trained with different set of 
initial weights until the best set of weights were 
calculated. The MSSE was minimized to small value. We 
used the NNs weights developed from the training case to 
test the     network performance. The NNs model has been 
tested with rest of the collected data, which represents 
two other projects. The mean of the sum square error 
training and testing cases is described in Table 1. In 
Figures 1 to 3 we are showing the results for project 40 in 
the training case and projects 17 and 27 in the testing 
cases. The prediction error in each case is provided in the 
lower figures.  
 

Project Number MSSE 
Training Project 40 17.9261 
Testing Project 17 9.7997 
Testing Project 27 15.8263 

 
Table 1: Results for the RBF Network when training with 
single project and testing with two projects. 
 
5.4 Training with two projects and Testing with one 
project 
 
The RBF network was trained with a data collected from 
two projects, project 40 and project 17. The MSSE was 
computed. The used the NNs weights developed from 
training case to test the network performance. The NNs 



model has been tested with the test data collected from 
project 27. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All projects have same nature since they were collected 
from Military application programs. The MSSE of the 
training and testing, in NN case is given in Table 2.  In 
Figures 4 to 5, we are showing the training and testing 
results for various projects using NNs. Also, the 
prediction error in each case is provided. 
 
From the above-described results, it can be seen that RBF 
network was able to generalize the results provided from 
training cases when test by other projects. All projects 
have the same nature. Our intention was to show it is 
possible to build a prediction model that can be used for 
predicting accumulated faults for other projects have data 
collected in the same environment. In our case it is the 
Military application.    
 

Project Number MSSE 

Training Project 40 and 17 15.738 
Testing Project 27 12.4759 

 
Table 2: Results for the RBF Network when training with 
two projects and testing with one project. 
 
 
 
 
 
 

Figure 1: a) Actual and Estimated Faults  
(b) Prediction error: Military Application 

Figure 2: a) Actual and Estimated Faults 
(b) Prediction error: Military Application

Figure 3: a) Actual and Estimated Faults  
(b) Prediction error: Military Application 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Conclusions and Future work 
 

We have shown that neural network can be used for 
building software reliability growth models. NNs were 
able to provide models with small SSE than the regression 

in all considered cases. If a regression model with higher 
order have been considered probably less SSE. Is 
obtained. However, the number of the regression model 
parameters will be increased. This will require more 
observations for providing reliable estimate of the 
parameters. At present, we are investigating the use of 
evolutionary computations in to solve the software 
reliability growth-modeling problem. 
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Figure 4: a) Actual and Estimated Faults 
(b) Prediction error: Military Application

Figure 5: a) Actual and Estimated Faults  
(b) Prediction error: Military Application 


