
Predicting Accumulated Faults in Software Testing Process
Using Radial Basis Function Network Models

Sultan Aljahdali Alaa Sheta David Rine

School of Information Tech. Computer and Systems Dept. Computer Science Dept.
George Mason University Electronics Research Institute George Mason University

Fairfax, VA 22030, USA Cairo, Egypt Fairfax, VA, 22030, USA
saljahda@gmu.edu asheta1@eri.sci.eg Drine@cs.gmu.edu

Abstract- In this paper we propose the idea of building a new
software reliability models using Radial Basis Function (RBF)
network. The RBF network is easy to design and the network
structure can be represented in a simple mathematical equation.
Our goal is to build a generalized model that can be used for
software predication [1]. The RBF network was trained with a
set of data collected from the testing process of Military
application projects. The RBF model was tested on other sets of
projects. The results are promising.

1. Introduction

Building a reliable model for predicting faults in software
testing process is very important in software reliability
growth prediction because both the release date and
resource allocation decision can be affected by the
accuracy of predication. Several solutions have been
proposed to address these issues for model selection [2,3].

Recently, computer systems started to play important
roles in our society. When failure happens to such systems
major damages are expected. This is why computer
systems must be very reliable. The current reduction of
hardware cost made redundancy techniques feasible so
that hardware faults are well tolerated by these
redundancy techniques. Due to increasing advance and
complexity of the developed software engineering
systems most computer systems today is huge and
complicated so that it is more likely to suffer from faults.
Thus, the reliability of software has recently become one
of the major issues in the realization of highly reliable
computer systems. The problem of developing efficient
and reliable software is still a challenge.

One of the main research direction in software reliability
research is how to develop general prediction models [4].
Existing models usually count on a priori information and
assumptions about the type of expected failures, the
probability of individual failures and the probability of

individual failures. Most of these models, named as
parametric models. The model parameters are adjusted
such that it can catch the behavior of the testing to failure
response. Statistical techniques are likely to provide
models that are linear in the parameters. This type of
models can not catch the actual testing to failure
characteristics by adjusting two or three parameters.

2. Neural Networks in the Prediction of Software

Reliability

One of the most common model-building approach used
in the literature as an alternative to least mean squares
regression is the feed-forward neural network. It is often
simply called back-propagation neural networks.

Although there is a large number of different neural
network architectures and training algorithms exist,
almost all published studies in software reliability
concerned was limited to this type [5,6,7,8,9,10]. This can
be seen as a reflection of the way of understanding the
neural network techniques by many practitioner.

3 Structure of RBF Network

The problem of interpolation of real multivariable time
series can be expressed as follows. Let us consider that a
set of N data points input space Rd, together with their
associated desired output values in R:
 (){ }ii

d
ii yxfNiRRyxD =≤≤×∈=)(1,, (1)

This data set can be used to characterize a function with
one-dimensional output values multi-dimensional
interpolation can be done by generalizing the following
equations and algorithms, while; considering separately
each component of the output vectors. We will consider
only dimensional output in the following. The RBF
approach to approximate function f use M functions φϕ . φϕ
is, the radial basis function, described as follows:

 φj (u) = φj (|| u-cj ||) (2)

cj are the locations of the centroids i.e., the centers of the
radial basis functions, while |…| denotes as the
Euclidean norm and j= 1, 2 …,N. u is the network input
vector. The approximation of the function f may be
expressed as a linear combination of the radial basis
functions:

∧
f (u) = ∑

=

M

i 1
 wj φj (|| u-cj ||) (3)

The most common radial basis function, in practices, is a
Gaussian kernel given by:

 φj (|| u-cj ||) = exp(|| u-cj ||/rj)2 (4)

rj is the width factor of the kernel j (j= 1,2,..,N). Once the
general shape of the φj function is chosen, i.e. cj and rj,
thus the purpose of a RBF algorithm is to find the weights
wj, to best fit the function f. fitting means that global mean
square errors between the desired outputs yi far all data
input points xi, 1 ≤ i ≤ N and the estimated outputs

)(ˆ ky is minimized. This error is given by:

∑
=

−=
N

ixf
N

MSSE
1i

2
i))((y

1 (5)

4. Measure of Performance

The evaluation criterion was defined as the Mean of the
Sum Square of the Error (MSSE). The equation which,
governs the MSSE is as follows:

∑
∧

−=
n

i

kyky
N

MSSE 2))()((
1

N is the number of measurements used. yi is the observed

faults and
∧
y is the predicted faults for the given

model structure.

5. Prediction Using RBF Network

5.1 Data Used

John Musa of Bell Telephone Laboratories compiled a
software reliability database contains data for 16 projects
from various applications. He collected failure interval
data to assist software managers in monitoring test status,

predicting schedules and to assist software researchers in
validating software reliability models.

5.2 Network Structure

The architecture of the network used for modeling the real
time control program is a multi-layer feed-forward
network. It consists of input layer, one hidden layer, and
an output layer. The input layer contains a number of
neurons equal to the number of delayed measurements
allowed to build the network model.

In our case, there are four input signals to the RBF
network. They are y(k-1),y(k-2),y(k-3),and y(k-4). y(k-1) is
the observed faults per day before the current day. The
hidden layer consists of four nonlinear neurons. The
activation functions for these neurons are Gaussian
function. The hidden units are fully connected to both the
input and output. The hidden and output layers node has
a linear activation function.

5.2 Training with single project and Testing with two
projects

The neural network was trained with different set of
initial weights until the best set of weights were
calculated. The MSSE was minimized to small value. We
used the NNs weights developed from the training case to
test the network performance. The NNs model has been
tested with rest of the collected data, which represents
two other projects. The mean of the sum square error
training and testing cases is described in Table 1. In
Figures 1 to 3 we are showing the results for project 40 in
the training case and projects 17 and 27 in the testing
cases. The prediction error in each case is provided in the
lower figures.

Project Number MSSE
Training Project 40 17.9261
Testing Project 17 9.7997
Testing Project 27 15.8263

Table 1: Results for the RBF Network when training with
single project and testing with two projects.

5.4 Training with two projects and Testing with one
project

The RBF network was trained with a data collected from
two projects, project 40 and project 17. The MSSE was
computed. The used the NNs weights developed from
training case to test the network performance. The NNs

model has been tested with the test data collected from
project 27.

All projects have same nature since they were collected
from Military application programs. The MSSE of the
training and testing, in NN case is given in Table 2. In
Figures 4 to 5, we are showing the training and testing
results for various projects using NNs. Also, the
prediction error in each case is provided.

From the above-described results, it can be seen that RBF
network was able to generalize the results provided from
training cases when test by other projects. All projects
have the same nature. Our intention was to show it is
possible to build a prediction model that can be used for
predicting accumulated faults for other projects have data
collected in the same environment. In our case it is the
Military application.

Project Number MSSE

Training Project 40 and 17 15.738
Testing Project 27 12.4759

Table 2: Results for the RBF Network when training with
two projects and testing with one project.

Figure 1: a) Actual and Estimated Faults
(b) Prediction error: Military Application

Figure 2: a) Actual and Estimated Faults
(b) Prediction error: Military Application

Figure 3: a) Actual and Estimated Faults
(b) Prediction error: Military Application

6. Conclusions and Future work

We have shown that neural network can be used for
building software reliability growth models. NNs were
able to provide models with small SSE than the regression

in all considered cases. If a regression model with higher
order have been considered probably less SSE. Is
obtained. However, the number of the regression model
parameters will be increased. This will require more
observations for providing reliable estimate of the
parameters. At present, we are investigating the use of
evolutionary computations in to solve the software
reliability growth-modeling problem.

7. Acknowledgment

This research is supported by the US-Egypt Board under
Grant No. INF4-001-019

Bibliography

[1] J. Musa, “Data analysis center for software: An
information analysis center,” Western Michigan University
library, Kalamazoo, MI 1980.
[2] M.R. Lyu, Handbook of Software Reliability Engineering.
IEEE Computer Society Press, McGraw Hill, 1996.
[3] K.M Atsumoto and K. Inoue, “Experimental evaluation
of software reliability growth models,” in Proceeding of the
IEEE of FTCS18, pp.148-153, 1988.
[4] S. Brocklehurst, P.Y. Chan, B. Littlewood, and J. Snell,
“Recalibrating software reliability models” IEEE Trans.
Software Engineering, vol.16, pp. 458-470, 1990
[5] Y. K. Malaya, N. Karunanithi, and P. Verman, “
predictability measures for software reliability models” in
proceeding of the 14 the IEEE inter. Conf. Computer Software
Applications, pp. 7-12, 1990.
[6] B. Littlewood and J.L. Verall, “A Bayesian reliability
model with a stochastically monotone failure rate,” IEEE
Trans. Reliability, vol.23, pp.108-114, 1974.
[7] N. Karunanithi, D. Whitely, and M.K., “ Prediction of
software reliability using connectionist models,” IEEE
Trans. on software Engineering, Vol. 18, no 7, pp. 563-574,
1992.
[8] R. Sitte, “Comparison of software reliability growth
prediction: Neural Networks VS Parametric
recalibration,” IEEE Trans. on Reliability, vol. 48, no.3, pp.
285-291, 1999.
[9] A. L. Goel, “ Software reliability models: Assumptions,
Limitations, and applicability,” IEEE transactions on
software Engineering, vol. 11, no. 12, pp. 1411-1434, 1985.
[10] P.B. Moranda, “predictions of software reliability
during debugging,” in proceeding of Annual reliability and
Maintainability symposium, pp. 327-332, 1975

Figure 4: a) Actual and Estimated Faults
(b) Prediction error: Military Application

Figure 5: a) Actual and Estimated Faults
(b) Prediction error: Military Application

